SECTION 260000 ELECTRICAL

February 2017

26 20 00 LOW VOLTAGE

PART 1: PRODUCTS

- 1.01 Wiring Devices
 - A. Electrical Requirements
 - 1. Minimum 20 ampere rated switches shall be used for lighting and power loads. In cases where wall dimmers are used, the dimmer shall be solid-state design with flicker noise control. Minimum accepted manufacturer and quality Lutron Nova T Series.
- 1.02 Disconnect Switches
 - A. Use heavy duty type fused and non-fused, enclosed switches only.
- 1.03 Metal Enclosed Distribution Switchgear
 - A. Preferred use ANSI C37.15/UL1066, draw out mounted, power circuit breakers in the switchgear.
 - B. Metering:
 - 1. Coordinate location of sub-metering & requirements with SHSU.
- 1.04 Panel boards
 - A. All panel boards shall have door locks. The front cover shall be a door in door arrangement with the inner door hinged to allow breaker handle access.

26 29 00 LOW VOLTAGE CONTROLLERS

SAM HOUSTON STATE UNIVERSITY DIVISION 26 ELECTRICAL DESIGN AND CONSTRUCTION STANDARDS

SECTION 260000 ELECTRICAL

February 2017

26 30 00 POWER GENERATING EQIUPMENT

PART 1: GENERAL

1.03 Emergency System

1. Fire pumps shall be connected to the emergency system per applicable codes.

SAM HOUSTON STATE UNIVERSITY DIVISION 26 ELECTRICAL DESIGN AND CONSTRUCTION STANDARDS

SECTION 260000 ELECTRICAL

February 2017

26 50 00 LIGHTING

PART 1: GENERAL

1.01 LUMINAIRES

A. All luminaires are preferred to be listed on the Design Lighting Consortium.

B.

DESIGN AND CONSTRUCTION STANDARDS

SECTION 260000 ELECTRICAL

February 2017

- 5. Preferred, All Edison or medium base lamps to be LED. Interior shall be 2700K, Exterior shall 4700K, 100/277V.
 - 6. Alternate, Screw and plug-in compact type fluorescent lamps installed within conditioned spaces shall operate b{ an electronic ballast y ith a poy er factor ×60% for screy -in, ×95% for plug-in, have a minimum rated lamp life of 10,000 hours at 3 hours/start, CCT of 5000K and CRI ×80. CFLs installed in waconditioned spaces y ill have the additional requirement of being operated by an electronic ballast designed for unconditioned spaces.

A. Ballasts for linear lamps.

- 1. Fluorescent ballasts shall be high frequency (see item 12 below), U.L. approved, CBM certified to operate as specified one, two or three T8 lamps
- 2. Shall be program start and classified as NEMA premium efficiency
 - 3. Shall be designed

SECTION 260000 ELECTRICAL

DESIGN AND CONSTRUCTION STANDARDS

February 2017

4. Shall be tested in accordance with LM-80 lumen depreciation test. Provide to the University, test results of each unique lamp. The L70 rated life result shall be a minimum of 25,000 hours for MR11, 16 and candelabra lamps; 40,000 hours for PAR 20, 30, 38 and BR30 lamps.

B. Power Supplies

1. Dimmable power supplies shall allow the light output to be maintained at the lowest control setting (prior to off) without dropping out.

C. Exit Signs

SECTION 260000 ELECTRICAL

DESIGN AND CONSTRUCTION STANDARDS

February 2017

2. Pedestrian Walk, Plaza Light Standard (NO EXCEPTIONS without prior approval)

CREE - BETA LED Fixture: The edge Round Luminaire

Model# BLD-EDR-5M-R5-06-E-UL-BZ-350

Spec: LED, minimum 5,250 lumens voltage 120-270, wet listed

Color: Dark Bronze

Walkway Pole:

United Lighting Standards 12' Aluminum Pole

Model # RSHA-15124pecihtig 12' Ailumnik , h2 (t)- [(U)3.2 (i)-13.7 (g)10.4 (rds)3, sWal3.7(a)-3.9 f (a)-3.t or: Dark Br (z)6.5 2 (r80 Tc 0 Tw 2.729 0 Td ()Ti EMC /0P <</MCID 5 635DC -12.229 -1.146 Td ()Ti EMC //MCID 5 635DC -12.229 -1.146

(2)0.3 2 (100 10 0 1 11 2.72) 0 14 (71)	DIVIC /OI \\IVI	CID 3 033DC	12.22)	1.1 10 14 ()1	Livio	1/1
	CREE -	В		${f E}$	T	
	\mathbf{S}	p	e	c		:
	C	0	1	0		r

SECTION 260000 ELECTRICAL